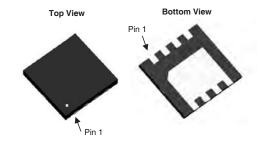
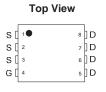


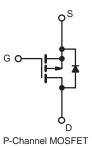
P-Channel 60 V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}$ (Ω) Max.	I _D (A)	Q _g (Typ.)	
- 60	0.026 at V _{GS} = - 10 V	- 30 ^d	23 nC	
	0.031 at V _{GS} =-4.5 V	- 27 ^d	23110	


FEATURES

- DT-Trench Power MOSFET
- 100 % R_g and UIS Tested


RoHS


APPLICATIONS

- · Battery, Load and Adaptor Switches
 - Notebook Computers
 - Notebook Battery Packs

DFN 3x3 EP

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	- 60	V
Gate-Source Voltage		V _{GS}	± 20	V
	T _C = 25 °C		- 30 ^d	
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	1 . [- 25 ^d	
Continuous Diam Current (1) = 130 °C)	T _A = 25 °C	l _D	-7.3 ^{a, b}	
	T _A = 70 °C	1	- 3.6 ^{a, b}	А
Pulsed Drain Current (t = 100 μs)		I _{DM}	- 120	
Continuous Source Drain Diede Current	T _C = 25 °C	I-	- 30 ^d	
Continuous Source-Drain Diode Current	T _A = 25 °C	- Is -	- 1.5 ^{a, b}	
Avalanche Current	L = 0.1 mH	I _{AS}	- 28	
Single-Pulse Avalanche Energy	L = 0.1 IIII	E _{AS}	22	mJ
	T _C = 25 °C		23.4	
Maximum Power Dissipation	T _C = 70 °C		15	w
	T _A = 25 °C	P _D	3.9 ^{a, b}	VV
	T _A = 70 °C	1 -	2.6 ^{a, b}	
Operating Junction and Storage Temperature Rang	T _J , T _{sta}	- 55 to 150	°C	

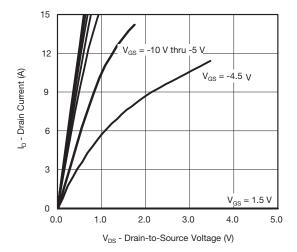
THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{a, c}	t ≤ 10 s	R _{thJA}	25	30	°C/W	
Maximum Junction-to-Case	Steady State	R _{thJC}	5.3	8.5		

Notes:

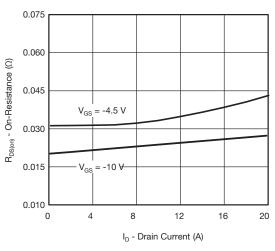
- a. Surface mounted on 1" x 1" FR4 board.
- b. t = 10 s.
- c. Maximum under steady state conditions is 70 °C/W.
- d. Package limited.
- e. The DFN3X3 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- f. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

www.din-tek.jp

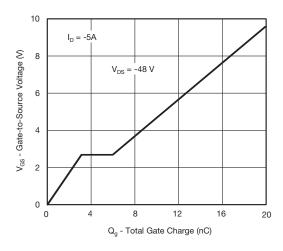
Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
		L	1			
V _{DS}	$V_{GS} = 0, I_D = -250 \mu A$	- 60			V	
ΔV _{DS} /T _J			- 20			
$\Delta V_{GS(th)}/T_J$	I _D = - 250 μA		3.6		mV/°C	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	- 1		- 3	V	
I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
I _{DSS}	V _{DS} = - 48 V, V _{GS} = 0 V			- 1	μА	
	V _{DS} = - 48 V, V _{GS} = 0 V, T _J = 55 °C			- 5		
I _{D(on)}	$V_{DS} \ge -10 \text{ V}, V_{GS} = -10 \text{ V}$	- 30			Α	
R _{DS(on)}	V _{GS} = - 10 V, I _D = - 5 A		0.026	0.033	Ω	
	V _{GS} = - 4.5 V, I _D = - 5 A					
9 _{fs}	V _{DS} = - 10 V, I _D = - 5 A		25		S	
			 			
C _{iss}			1850		pF	
C _{oss}	V _{DS} = - 48 V, V _{GS} = 0 V, f = 1 MHz		590			
C _{rss}						
	V _{DS} = -48 V, V _{GS} = -10 V, I _D = -5 A		23		nC	
Q_{g}			16.4			
Q_{gs}	$V_{DS} = -48 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5 \text{ A}$		9.5			
Q_{gd}			30.6		1	
R _g	f = 1 MHz		1.5		Ω	
t _{d(on)}			15			
t _r	$V_{DS} = -48 \text{ V}, R_L = 3.5 \Omega$ $I_D \cong -5 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$		11		-	
t _{d(off)}			23			
t _f			8			
t _{d(on)}			28		ns	
t _r	$V_{DD} = -48 \text{ V}, R_{L} = 3.5 \Omega$		30		- - -	
t _{d(off)}	$I_D \cong -5 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$		22			
t _f			19			
ics			1		l	
I _S	T _C = 25 °C			- 30	A	
I _{SM}				- 120		
	I _S = -3 A, V _{GS} = 0		- 0.7	- 1.2	V	
e Q _{rr}			25		ns	
Q_{rr}	I_ = - 5 A dl/dt = 100 A/us T ₁ = 25 °C		52	<u>.</u>	nC	
t _a	$I_F = -3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, I_J = 25 ^{\circ}\text{C}$		10		ns	
	$\begin{array}{c} \Delta V_{DS}/T_J \\ \Delta V_{GS(th)}/T_J \\ \hline V_{GS(th)} \\ \hline I_{GSS} \\ \hline I_{DSS} \\ \hline I_{D(on)} \\ \hline R_{DS(on)} \\ \hline g_{fs} \\ \hline \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline Q_g \\ \hline Q_{gd} \\ \hline R_g \\ \hline t_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \end{bmatrix} \\ \hline I_{SM} \\ \hline V_{SD} \\ \hline t_{rr} \\ \hline Q_{rr} \\ \hline \end{array}$	$ \begin{array}{c c} \Delta V_{DS}/T_{J} & I_{D} = -250 \mu A \\ \hline \Delta V_{GS(th)}/T_{J} & V_{DS} = V_{GS}, I_{D} = -250 \mu A \\ \hline V_{DS} = 0 V, V_{GS} = \pm 20 V \\ \hline V_{DS} = -48 V, V_{GS} = 0 V \\ \hline V_{DS} = -48 V, V_{GS} = 0 V \\ \hline V_{DS} = -48 V, V_{GS} = 0 V \\ \hline V_{DS} = -48 V, V_{GS} = 0 V, T_{J} = 55 ^{\circ}C \\ \hline V_{DS} = -48 V, V_{GS} = -10 V \\ \hline V_{DS} = -10 V, I_{D} = -5 A \\ \hline V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{GS} = 0 V, f = 1 MHz \\ \hline C_{rss} & V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline Q_{g} & V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline Q_{gd} & F_{g} & f = 1 MHz \\ \hline V_{DS} = -48 V, V_{GS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{GS} = -10 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, I_{D} = -5 A \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, V_{CS} = 10 V \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, V_{CS} = 10 V \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, V_{CS} = 10 V \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, V_{CS} = 10 V \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, V_{CS} = 10 V \\ \hline V_{DS} = -48 V, V_{CS} = -4.5 V, V_{CS} = 10 V \\ \hline V_{DS} = -48 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

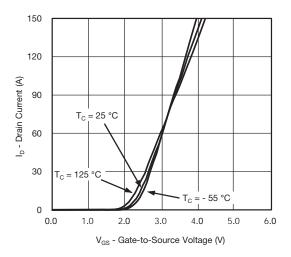

Notes:

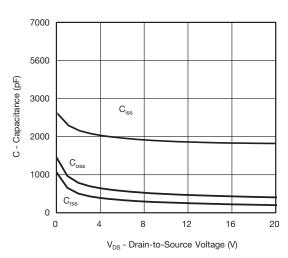
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

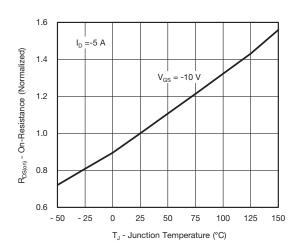

a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$

b. Guaranteed by design, not subject to production testing.

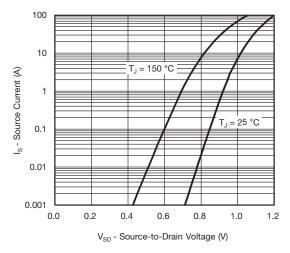



Output Characteristics

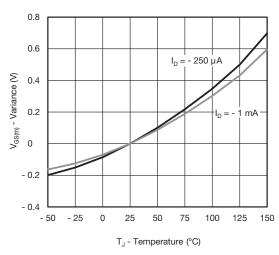

On-Resistance vs. Drain Current


Gate Charge

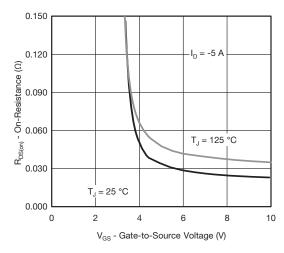
Transfer Characteristics

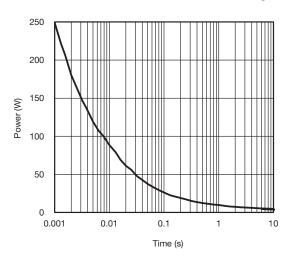


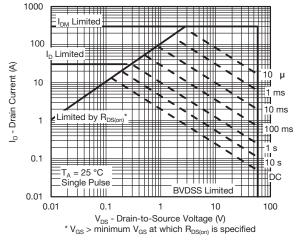
Capacitance



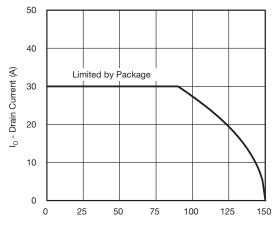
On-Resistance vs. Junction Temperature



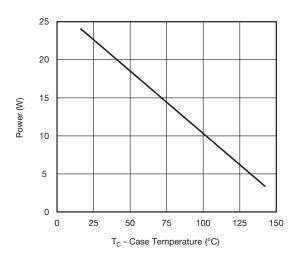

Source-Drain Diode Forward Voltage

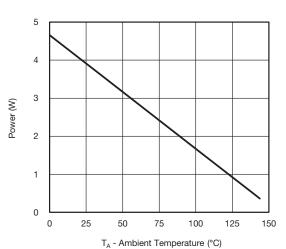

Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage



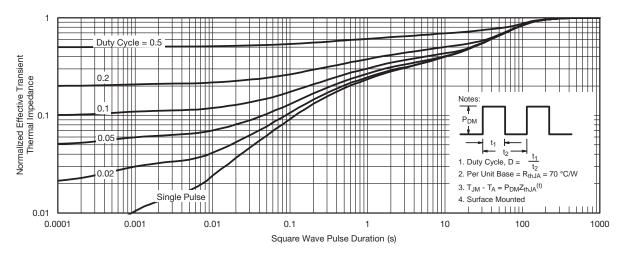
Single Pulse Power, Junction-to-Ambient


Safe Operating Area



 T_{C} - Case Temperature (°C)

Current Derating*



Power Derating, Junction-to-Ambient

^{*} The power dissipation P_D is based on $T_{J(max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Legal Disclaimer Notice

www.din-tek.jp

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.