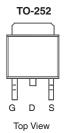
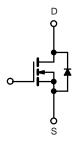


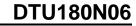
N-Channel 60 V (D-S) MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a		
60	0.0018 at $V_{GS} = 10 \text{ V}$	180		
30	0.0028 at $V_{GS} = 4.5 \text{ V}$	155		


FEATURES

- DT-Trench Power MOSFET
- 100 % R_g and UIS Tested

COMPLIANT



N-Channel MOSFET

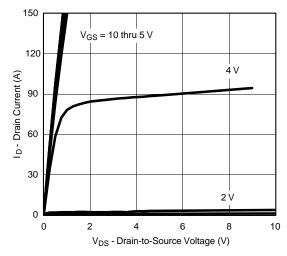
ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)						
Parameter		Symbol	Limit	Unit		
Gate-Source Voltage		V_{GS}	± 20	V		
Continuous Drain Current (T _{.1} = 175 °C) ^b	T _C = 25 °C	I_	180			
Continuous Diam Current (1) = 175 C)	T _C = 100 °C	- I _D	135 ^a			
Pulsed Drain Current		I _{DM}	720	A		
Continuous Source Current (Diode Conduction)		I _S	180 ^a			
Avalanche Current		I _{AS}	150			
Single Avalanche Energy (Duty Cycle ≤ 1 %)	L = 0.1 mH	E _{AS}	330	mJ		
Maximum Power Dissipation	T _C = 25 °C	P _D	255	- W		
Maximum Fower Dissipation	T _A = 25 °C	' D	6.9 ^b			
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C		

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^a	t ≤ 10 sec	R _{thJA}	8	15	
Maximum Junction-to-Ambient	Steady State	'`thJA	12	45	°C/W
Maximum Junction-to-Case		R _{thJC}	0.9	1.5	

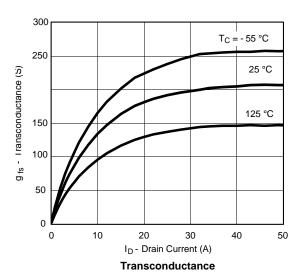
- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- $c.\ t \leq 10\ s.$

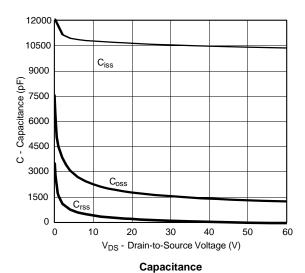
www.din-tek.jp

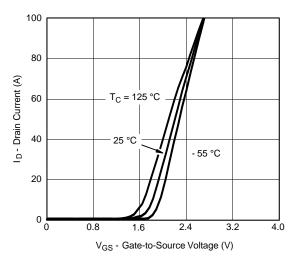
Static	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
Drain-Source Breakdown Voltage V _{DS} V _{GS} = 0 V, I _D = 250 μA 60 V Gate Threshold Voltage V _{GS} (th) V _{DS} = V _{GS} , I _D = 250 μA 1 - 3 Gate-Body Leakage I _{GSS} V _{DS} = 0 V, V _{GS} = ± 20 V ± 100 nA Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 48 V, V _{GS} = 0 V 1 1 V _{DS} = 48 V, V _{GS} = 0 V, T _J = 175 °C 50 250 250 On-State Drain Current ^b I _{D(on)} V _{DS} = 5 V, V _{GS} = 10 V 180 A Drain-Source On-State Resistance ^b R _{DS(on)} V _{DS} = 5 V, V _{DS} = 10 V, I _D = 20 A 0.0018 0.0026 V _{GS} = 10 V, I _D = 20 A 0.0023 0.0032 0.0032 Drain-Source On-State Resistance ^b 9fs V _{DS} = 48 V, I _D = 20 A 0.0018 0.0026 V _{GS} = 10 V, I _D = 20 A 0.0023 0.0032 0.0032 0.0032 0.0032 Drain-Source On-State Resistance ^b 9fs V _{DS} = 48 V, I _D = 20 A 175 S S Dynamic 1 1 1 1 0.0023	Parameter	Symbol	Test Conditions	Min.	Typ. ^a	Max.	Unit	
Gate Threshold Voltage	Static							
Gate Threshold Voltage V _{GS(th)} V _{DS} = V _{SS} , I _D = 250 µA 1 - 3	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			V	
Vos = 48 V, Vos = 0 V	Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	-	3		
	Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
V _{DS} = 48 V, V _{GS} = 0 V, T _J = 175 °C 250	Zero Gate Voltage Drain Current		V _{DS} = 48 V, V _{GS} = 0 V			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _{DSS}	V _{DS} = 48 V, V _{GS} = 0 V, T _J = 125 °C			50	μA	
$ P_{OS} = 10 \ V. \ _{D} = 20 \ A \\ P_{OS} = 10 \ V. \ _{D} = 20 \ A \\ P_{OS} = 10 \ V. \ _{D} = 20 \ A \\ P_{OS} = 10 \ V. \ _{D} = 20 \ A \\ P_{OS} = 10 \ V. \ _{D} = 20 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 15 \ A \\ P_{OS} = 10 \ V. \ _{D} = 10 \ A \\ P_{OS} = 10 \ P$			V _{DS} = 48 V, V _{GS} = 0 V, T _J = 175 °C			250		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	180			Α	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _{GS} = 10 V, I _D = 20 A		0.0018	0.0026		
$V_{GS} = 10 \text{ V, } I_D = 15 \text{ A, } I_J = 173 \text{ C} \\ V_{GS} = 4.5 \text{ V, } I_D = 15 \text{ A} \\ 0.0028 0.0039 \\ \hline \\ V_{GS} = 4.5 \text{ V, } I_D = 15 \text{ A} \\ 0.0028 0.0039 \\ \hline \\ V_{DS} = 48 \text{ V, } I_D = 20 \text{ A} \\ \hline \\ Dynamic \\ \hline \\ Dutput Capacitance \\ C_{ISS} \\ Cotal Gate Chargec \\ C_{Oss} \\ Cotal Gate Chargec \\ C_{Oss} \\ Cotal Gate Chargec \\ C_{Ogs} \\ Cotal Gate Chargec \\ C_{Oss} \\ Cotal Gate Chargec \\ C_{Ogs} \\ C_{Oss} \\ C_{$	5 : 0	D	V _{GS} = 10 V, I _D =20 A, T _J = 125 °C		0.0023	0.0032	Ω	
Forward Transconductance ^b g_{fs} $V_{DS} = 48 \text{ V}, I_D = 20 \text{ A}$ 175 S Dynamic Input Capacitance C_{iss} 11050 11050 pF Output Capacitance C_{oss} $V_{GS} = 0 \text{ V}, V_{DS} = 48 \text{ V}, f = 1 \text{ MHz}$ 1650 pF Reverse Transfer Capacitance C_{rss} 185 79 79 79 79 79 79 79 79 70	Drain-Source On-State Resistance	NDS(on)	V _{GS} = 10 V, I _D =15 A, T _J = 175 °C		0.0029	0.0042		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = 4.5 V, I _D = 15 A		0.0028	0.0039		
$ \begin{array}{ c c c c c c } \hline \text{Input Capacitance} & C_{iss} \\ \hline \text{Output Capacitance} & C_{oss} \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} \\ \hline \hline \text{Total Gate Charge}^c & Q_g \\ \hline \text{Gate-Source Charge}^c & Q_{gs} \\ \hline \text{Gate-Drain Charge}^c & Q_{gd} \\ \hline \text{Turn-On Delay Time}^c & t_d \\ \hline \text{Turn-Off Delay Time}^c & t_d \\ \hline \text{Fall Time}^c & t_f \\ \hline \text{Source-Drain Diode Ratings and Characteristics } (T_C = 25 ^{\circ}\text{C}) \\ \hline \text{Pulsed Current} & I_{SM} \\ \hline \text{Diode Forward Voltage} & C_{oss} \\ \hline \hline \text{V}_{QS} = 0 \text{V}, \text{V}_{DS} = 48 \text{V}, \text{V}_{GS} = 10 \text{V}, \text{I}_{D} = 20 \text{A} \\ \hline \text{11050} \\ \hline \text{1650} \\ \hline \text{1660} \\ \hline \text{1660} \\ \hline \text{11050} \\ \hline \text$	Forward Transconductance ^b	9 _{fs}	$V_{DS} = 48 \text{ V}, I_{D} = 20 \text{ A}$		175		S	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}			11050		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 48 \text{ V}, f = 1 \text{ MHz}$		1650			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}			185			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge ^c	Q_g			79		nC	
Turn-On Delay Time ^c $t_{d(on)}$ Rise Time ^c t_r $V_{DD} = 48 \text{ V}, R_L = 0.6 \Omega$ Turn-Off Delay Time ^c $t_d(off)$ Fall Time ^c t_f $I_D \cong 20 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$ Source-Drain Diode Ratings and Characteristics ($T_C = 25 \text{ °C}$) Pulsed Current I_{SM} $T_{CD} = 20 \text{ A}, V_{GS} = 0 \text{ V}$ $T_{CD} = 20 \text{ A}$ Diode Forward Voltage $T_T = 20 \text{ A}, V_{GS} = 0 \text{ V}$ $T_{CD} = 20 \text{ A}$	Gate-Source Charge ^c	Q_{gs}	$V_{DS} = 48 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$		16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge ^c	Q_{gd}]		20			
Turn-Off Delay Time ^c $t_{d(off)}$ $I_D \cong 20 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$ 68 Fall Time ^c t_f 15 Source-Drain Diode Ratings and Characteristics ($T_C = 25 \text{ °C}$) Pulsed Current I_{SM} 720 A Diode Forward Voltage V_{SD} $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$ 1.25 V	Turn-On Delay Time ^c	t _{d(on)}			20			
Turn-Off Delay Time ^c $t_{d(off)}$ $I_D \cong 20 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$ 68 Fall Time ^c t_f 15 Source-Drain Diode Ratings and Characteristics ($T_C = 25 \text{ °C}$) Pulsed Current I_{SM} 720 A Diode Forward Voltage V_{SD} $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$ 1.25 V	Rise Time ^c	t _r	DD		35		ns	
Source-Drain Diode Ratings and Characteristics ($T_C = 25$ °C)Pulsed Current I_{SM} 720ADiode Forward Voltage V_{SD} $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$ 1.25V	Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong 20 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$		68			
Pulsed Current I_{SM} 720ADiode Forward Voltage V_{SD} $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$ 1.25V	Fall Time ^c	t _f			15			
Diode Forward Voltage V_{SD} $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$ 1.25 V	Source-Drain Diode Ratings and Cha	racteristics (T _C = 25 °C)					
	Pulsed Current					720	А	
Reverse Recovery Time t_{rr} $I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ 73 ns	Diode Forward Voltage	V _{SD}				1.25	V	
	Reverse Recovery Time	t _{rr}	$I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		73		ns	

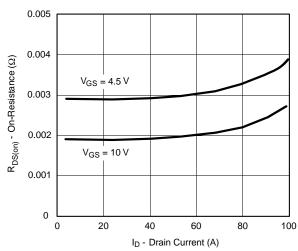

Notes:

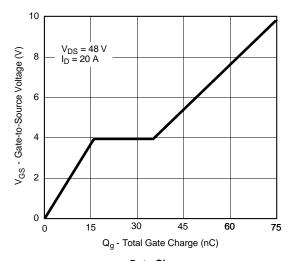
- a. For design aid only; not subject to production testing.
- b. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- c. Independent of operating temperature.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

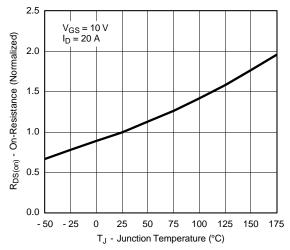


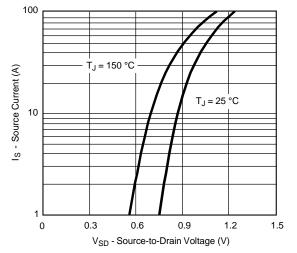

TYPICAL CHARACTERISTICS (25 °C unless noted)


Output Characteristics



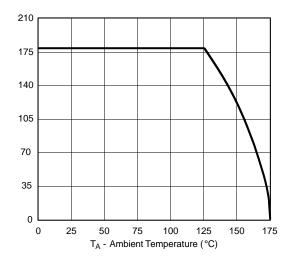
Transfer Characteristics


On-Resistance vs. Drain Current

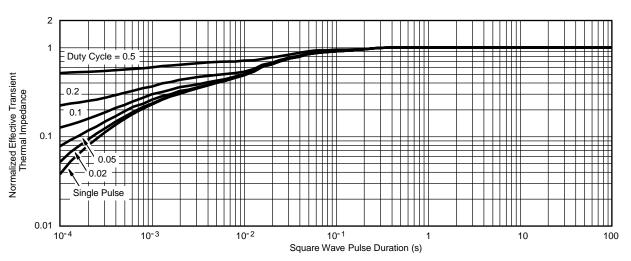

Gate Charge

TYPICAL CHARACTERISTICS (25 °C unless noted)

On-Resistance vs. Junction Temperature



Source-Drain Diode Forward Voltage



THERMAL RATINGS

1000_F Limited by 10 µs 100 I_D - Drain Current (A) 100 µs 10 1 ms 10 ms 100 ms DC T_C = 25 °C Single Pulse 0.1 0.01 - 0.1 100 $V_{DS} - Drain-to-Source \ Voltage \ (V) \\ ^*V_{GS} > minimum \ V_{GS} \ at \ which \ R_{DS(on)} \ is \ specified$ Safe Operating Area

Maximum Drain Current vs. Ambient Temperature

Normalized Thermal Transient Impedance, Junction-to-Case

www.din-tek.jp

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.