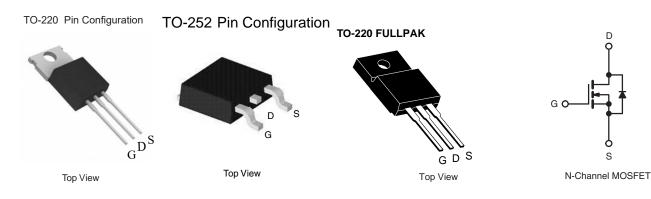


www.din-tek.jp

RoHS

N-Channel 650V (D-S) Super Junction Power MOSFET


PRODUCT SUMMARY						
V_{DS} (V) at T_J max.	650					
R _{DS(on)} max. at 25 °C (Ω)	$V_{GS} = 10 V$	0.42				
Q _g max. (nC)	38					
Q _{gs} (nC)	4					
Q _{gd} (nC)	4.2					
Configuration	Single					

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (Ciss)
- Reduced switching and conduction losses
- Ultra low gate charge (Q_a)
- Avalanche energy rated (UIS)

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial

PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V _{DS}	650	V	
Gate-Source Voltage			V _{GS}	± 30		
Continuous Drain Current (T _J = 150 °C)	V at 10 V	T _C = 25 °C		11		
	V _{GS} at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$	I _D	9.7	А	
Pulsed Drain Current ^a			I _{DM}	55		
Linear Derating Factor				1.67/1.5/0.3	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	132	mJ	
Maximum Power Dissipation			P _D	83/83/31		
Operating Junction and Storage Temperature Range			T _J , T _{stg} -55 to +150		°C	
Drain-Source Voltage Slope	T _J = 125 °C		-1) / / -1+	50		
Reverse Diode dV/dt ^d			dV/dt -	3.1	V/ns	
Soldering Recommendations (Peak Temperature) ^c	for	10 s		300	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 4.5 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D,\, dI/dt$ = 100 A/µs, starting T_J = 25 °C.

DTU11N65SJ/DTP11N6) SJ/DTP11N6) FSJ www.din-tek.jp

$ \begin{array}{ c c c c c c } \hline PARAMETER & SYMBOL & TYP. MAX. UNIT \\ \hline Maximum Junction-to-Ambient & R_{m,A} & - & 60 \\ \hline Maximum Junction-to-Case (Drain) & R_{m,O} & - & 0.6 \\ \hline \\ $	THERMAL RESISTANCE RATINGS											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP.		MAX.		UNIT					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Ambient	R _{thJA}					9C AM					
$\begin{array}{ c c c c c } \hline PARAMETER SYMBOL SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	Maximum Junction-to-Case (Drain)	R _{thJC}					°C/W					
$\begin{array}{ c c c c c } \hline PARAMETER SYMBOL SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$												
	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)											
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage V_{DS} & $V_{QS} = 0 V, $l_{D} = 250 \ \mu A$ & 650 & - $ & V V/C$ \\ \hline V_{DS} Temperature Coefficient $\Delta V_{DS} T_J$ & Reference to 25 °C, $l_{D} = 1 \ m A$ & - $ & 0.65 & - $ & V'/C \\ \hline Gate-Source Threshold Voltage (N) $V_{OS} W$ & $V_{DS} = V_{S}, $l_{D} = 250 \ \mu A$ & 2 & - $ & 4 & V \\ \hline Gate-Source Leakage I_{QSS} & $V_{QS} = 20V$ & - $ & - $ & 110 & nA \\ \hline V_{QS} = $ $20V$ & $-$ & $-$ & 11 & μA \\ \hline V_{QS} = $ $20V$ & $V_{CS} = $ $20V$ & $-$ & $-$ & 11 & μA \\ \hline V_{DS} = $ $650V$, $V_{QS} = 0V$ & $-$ & $-$ & 10 & $-$ \\ \hline Drain-Source On-State Resistance $R_{DS(en)}$ & $V_{DS} = $30V$ \ l_{D} = $5A$ & $-$ & 0.42 & $-$ & 0.42 & $-$ & 0.65 \\ \hline Porward Transconductance g_{Is} & $V_{DS} = $30V$ \ l_{D} = $5A$ & $-$ & 16 & $-$ & 0.42 & $-$ & 0.65 \\ \hline Porward Transconductance C_{DSS} & $V_{DS} = $0V$ \ l_{D} = $5A$ & $-$ & 16 & $-$ & 0.42 & $-$ & 0.65 \\ \hline Portance $V_{DS} = 100V$, $l_{D} = $5A$ & $-$ & 16 & $-$ & 0.42 & $-$ & 0.65 \\ \hline Portance C_{DSS} & $V_{DS} = $0V$ \ V_{DS} = $0V$ \ Caree for 0.00 \ P$	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static		-									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D =	250 µA	650	-	-	V			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C,	, I _D = 1 mA	-	0.65	-	V/°C			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D =	250 µA	2	-	4	V			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$V_{GS} = \pm 20$) V	-	-	± 100	nA			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}			-	-	± 1	μA				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-	1	μA				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}			-	-	10					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	R _{DS(on)}				-	0.42	-	Ω			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance		V _{DS}	= 30 V, I _D	= 5 A	-	16	-	S			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic						•		L			
$ \begin{array}{ c c c c c } \hline \text{Output Capacitance} & C_{oss} & V_{DS} = 100 \text{ V}, & - & 140 & - & \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} & & & \\ \hline \text{Ffective Output Capacitance, Energy} & C_{o(er)} & & & \\ \hline \text{Effective Output Capacitance, Time} & C_{o(tr)} & & & \\ \hline \text{Related }^{b} & & & \\ \hline \text{Cotal Gate Charge} & Q_{g} & & \\ \hline \text{Cotal Gate Charge} & Q_{gg} & Q_{gg} & \\ \hline \text{Cate-Source Charge} & Q_{gg} & Q_{gg} & \\ \hline \text{Cate-Drain Charge} & Q_{gg} & & \\ \hline \text{Cate-Drain Charge} & Q_{gg} & & \\ \hline \text{Cate-Drain Charge} & Q_{gg} & & \\ \hline \text{Turn-OD Delay Time} & t_{d(off)} & & \\ \hline \text{Rise Time} & t_{r} & \\ \hline \text{Turn-OD Delay Time} & t_{d(off)} & & \\ \hline \text{Fail Time} & & t_{r} & \\ \hline \text{Continuous Source-Drain Diode Current} & I_{S} & & \\ \hline \text{MOSFET symbol} & & \\ \hline \text{Showing the} & & \\ & & & & \\ & & & & \\ \hline \text{ntegral reverse} & & \\ \hline \text{Pulsed Diode Forward Current} & I_{S} & & \\ \hline \text{Riverse Recovery Time} & t_{r} & \\ \hline \text{Riverse Recovery Charge} & Q_{Gr} & & \\ \hline \text{Riverse Recovery Charge} & Q_{Gr} & & \\ \hline \text{Riverse Recovery Charge} & Q_{Gr} & & \\ \hline \text{Riverse Recovery Charge} & Q_{Gr} & & \\ \hline \text{Riverse Recovery Charge} & Q_{rr} & \\ \hline \text{Riverse Recovery Charge} & Q_{rr} & \\ \hline \text{Riverse Recovery Charge} & Q_{rr} & \\ \hline \text{Riverse Recovery Charge} & C_{rr} & \\ \hline \text{Riverse Recovery Charge} & Q_{rr} & \\ \hline \text{Riverse Recovery Charge} & C_{rr} & \\ \hline \text{Riverse Recovery Charge} & \hline \text{Riverse Recovery Charge} & \\ \hline \text{Riverse Recovery Charge} & \hline \text{Riverse Recovery Charge} & \\ \hline \text{Riverse Recovery Charge} & \hline \text{Riverse Recovery Charge} & \\ \hline \text{Riverse Recovery Charge} & \\ \hline \text{Riverse Recovery Charge} & \hline \text{Riverse Riverse Recovery Charge} & \hline \text{Riverse Recovery Charge} & \hline Ri$	Input Capacitance	C _{iss}	$V_{DS} = 100 V,$		-	680	-	pF				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output Capacitance	C _{oss}			-	140	-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	5	-					
$\begin{array}{c c c c c c c c } \hline \mbox{Hective Output Capacitance, I ime} & C_{0(tr)} & & & & & & & & & & & & & & & & & & &$		C _{o(er)}	$V_{DS} = 0 V $ to 520 V, $V_{GS} = 0 V$		-	63	-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(tr)}			-	113	-					
$\begin{tabular}{ c c c c c c } \hline Gate-Drain Charge & Q_{gd} & $-$ & 4.5 & $-$ \\ \hline Turn-On Delay Time & $t_{d(on)}$ \\ \hline Rise Time & t_{r} & $V_{DD} = 520 \ V, \ I_D = 5 \ A,$ \\ $V_{GS} = 10 \ V, \ R_g = 9.1 \ \Omega$ & $-$ & 11 & 35 \\ \hline -$ & 81 & 90 \\ \hline -$ & 25 & 40 \\ \hline \\ \hline \\ \hline \\ Gate \ Input \ Resistance & R_g & $f = 1 \ MHz, \ open \ drain & $-$ & 3.5 & $-$ & Ω \\ \hline \\ \hline \\ \hline \\ \hline \\ Drain-Source \ Body \ Diode \ Characteristics & $$V_{GS} = 10 \ V, \ R_g = 9.1 \ \Omega$ & $-$ & 3.5 & $-$ & Ω \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Gate \ Input \ Resistance & R_g & $f = 1 \ MHz, \ open \ drain & $-$ & 3.5 & $-$ & Ω \\ \hline \\ $	Total Gate Charge	Qg				-	38	56				
$\begin{tabular}{ c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	*	$V_{GS} = 10 V$ $I_D = 5 A, V_{DS} = 520 V$		-	4	-	nC				
Rise Time t_r $V_{DD} = 520 \text{ V}, \text{ I}_D = 5 \text{ A}, V_{GS} = 10 \text{ V}, \text{ R}_g = 9.1 \Omega$ $ 11$ 35 $ 81$ 90 Fall Time t_f t_f $ 25$ 40 $ 25$ 40 Gate Input Resistance R_g $f = 1 \text{ MHz}, \text{ open drain}$ $ 3.5$ $ \Omega$ Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S $MOSFET symbol showing the integral reverse p - n junction diode 1135Pulsed Diode Forward VoltageV_{SD}T_J = 25 \ ^{\circ}C, I_S = 5 \text{ A}, V_{GS} = 0 \text{ V} 1.5VReverse Recovery Timet_{rr}T_J = 25 \ ^{\circ}C, I_F = I_S = 5 \text{ A}, dI/dt = 100 \ A/\mu S, V_B = 400 \ V 3.3 \mu \mu$	Gate-Drain Charge	Q_gd				-	4.5	-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 9.1 \Omega$		-			-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		t _r										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode-11APulsed Diode Forward CurrentIsMIsMTJ = 25 °C, IS = 5 A, VGS = 0 V15VDiode Forward VoltageVSDTJ = 25 °C, IS = 5 A, VGS = 0 V1.5VReverse Recovery TimetrrTJ = 25 °C, IF = IS = 5 A, dl/dt = 100 A/µS, VB = 400 V-3.3-µC					-		-					
	•	-	T = 1	winz, ope	n drain	-	3.5	-	Ω			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characteristic	cs				1	1					
Pulsed Diode Forward CurrentIsmIntegra reverse p - n junction diode55Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 5 \ ^{\circ}A$, $V_{GS} = 0 \ ^{\circ}V$ 1.5 V Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 5 \ ^{\circ}A$, dl/dt = 100 A/µs, $V_R = 400 \ ^{\circ}V$ 1.5 V	Continuous Source-Drain Diode Current	I _S	showing the integral reverse		-	-	11	A				
Reverse Recovery Time t_{rr} -270-nsReverse Recovery Charge Q_{rr} T_J = 25 °C, I_F = I_S = 5 A, dl/dt = 100 A/µs, V_B = 400 V-3.3-µC	Pulsed Diode Forward Current	I _{SM}			-	-	55					
Reverse Recovery Time t_{rr} -270-nsReverse Recovery Charge Q_{rr} T_J = 25 °C, I_F = I_S = 5 A, dl/dt = 100 A/µs, V_B = 400 V-3.3-µC	Diode Forward Voltage	V _{SD}	T _J = 25 °C, I _S = 5 A, V _{GS} = 0 V		-	-	1.5	V				
Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C, I_F = I_S = 5 \ ^{\circ}A, \\ dI/dt = 100 \ ^{\circ}A/\mu S, V_R = 400 \ ^{\circ}V$ -3.3- μC	Reverse Recovery Time		T _J = 25 °C, I _F = I _S = 5 A,		-	270	-	ns				
di/dt = 100 A/µs, v _R = 400 V	Reverse Recovery Charge				-	3.3	-	μC				
	Reverse Recovery Current	I _{RRM}			-	30	-	-				

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} . b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

www.din-tek.jp

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

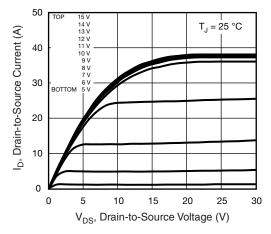


Fig. 1 - Typical Output Characteristics

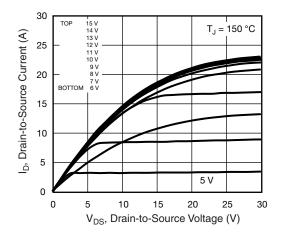


Fig. 2 - Typical Output Characteristics

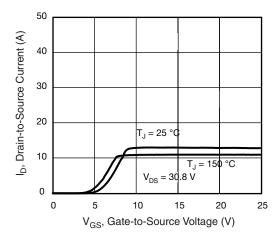


Fig. 3 - Typical Transfer Characteristics

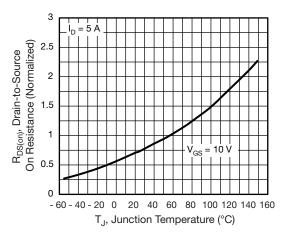


Fig. 4 - Normalized On-Resistance vs. Temperature

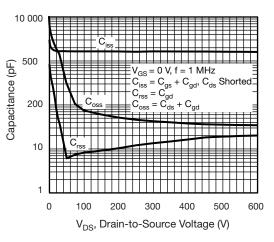


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

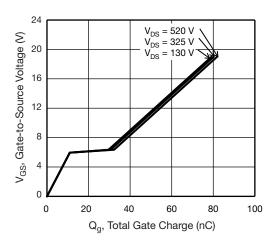


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

www.din-tek.jp

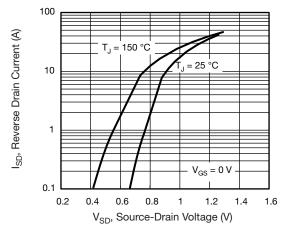
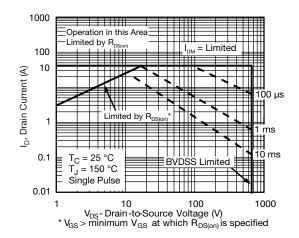



Fig. 7 - Typical Source-Drain Diode Forward Voltage

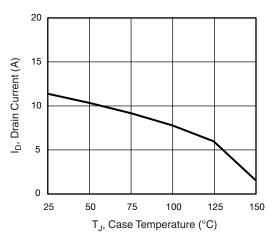


Fig. 9 - Maximum Drain Current vs. Case Temperature

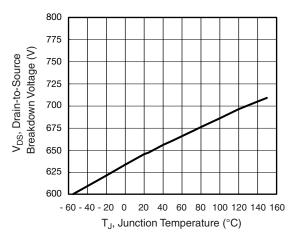


Fig. 10 - Temperature vs. Drain-to-Source Voltage

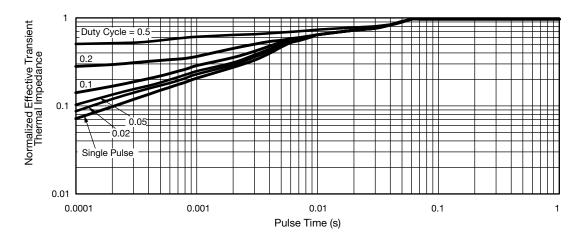


Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

www.din-tek.jp

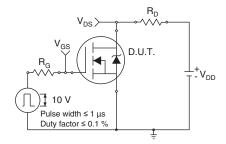


Fig. 12 - Switching Time Test Circuit

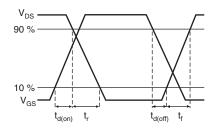


Fig. 13 - Switching Time Waveforms

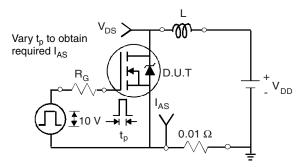


Fig. 14 - Unclamped Inductive Test Circuit

Fig. 15 - Unclamped Inductive Waveforms

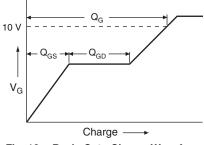


Fig. 16 - Basic Gate Charge Waveform

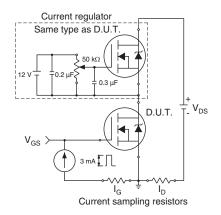
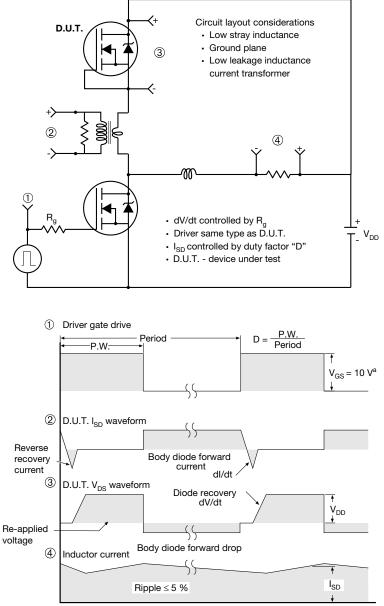



Fig. 17 - Gate Charge Test Circuit

www.din-tek.jp

Note

a. $V_{GS} = 5 V$ for logic level devices

Fig. 18 - For N-Channel

Disclaimer

www.din-tek.jp

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.